
Raphael Reitzig

Automated Parallelisation of
Dynamic Programming Recursions

FACHBEREICH
INFORMATIK
FACHBEREICH
INFORMATIK

Handed in as Master thesis at University of Kaiserslautern, May 2012

Supervisors:

Prof. Dr. Markus E. Nebel Department of Computer Science
University of Kaiserslautern

Umut A. Acar, Ph.D. Max Planck Institute for Software Systems
Kaiserslautern / Saarbrücken

All concepts appearing in this thesis are fictitious. Any resemblance to real
objects, animate or silicate, is purely coincidental.

No animals but gummy bears were harmed in the making of this thesis.
All test prints have been recycled as jotting paper.

Version 1.0 (July 25, 2012)
c
 Raphael Reitzig

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Why program by hand in five days

what you can spend five years

of your life automating?

Terence Parr (2007)

Contents

1 Introduction 4
1.1 Parallel Algorithms . 5
1.2 Dynamic Programming . 11
1.3 Related Work . 15

2 Theoretical Groundwork 17
2.1 Diagonal Frontier . 22
2.2 Row Splitting . 26
2.3 Not Parallelisable Case . 30
2.4 Relaxing Assumptions . 30
2.5 Considering Caches . 33
2.6 Considering Communication 34
2.7 Lifting to Higher Dimensions 35

3 Prototype Implementation 37
3.1 Framework . 38
3.2 Implementing Diagonal Frontier 40
3.3 Implementing Row Splitting 44

4 Compiler Integration 50

5 Conclusion 54
5.1 Future Work . 54

A Source Code 57
A.1 Prototype Implementations 57
A.2 Compiler Plugin Samples . 64

B Glossary 69

1
Introduction
Parallel programming has been an active research field for decades, both
in theory and practise. Today, machines with multiple but relatively few
cores—in 2012, numbers between two and eight are common—are ubiqui-
tous. However, many applications are effectively sequential. This is often
unproblematic because normal users utilise multiple cores by running many
applications—web browser, instant messenger, office suite, music player,
anti-virus software, etc.—simultaneously, each of which does not require
parallelism to provide a pleasant usage experience. In use cases that involve
huge calculations, on the other hand, it can be frustrating to watch seven
cores idle while the eighth takes its time to complete the task.

Parallel programming is still considered hard because of non-determin-
istic concurrency issues and the challenge of designing and programming al-
gorithms that are either parallel or can be parallelised automatically. There
are many approaches to simplifying parallel programming. Pure functional
languages, for example, are conceptually easy to parallelise as there are
no side effects; their implementations are often not as easy to parallelise,
though. Procedural languages, on the other hand, are harder to tackle as
side effects make deciding whether and how a given piece of code can be
parallelised hard. Techniques such as resource locks and agent models help
but introduce their own sets of problems, some of which are hidden behind
the shutters of clever libraries. There are also language extensions which
allow programmers to annotate their code with respect to potential for par-
allelisation. As soon as multiple threads read and write the same data in
parallel, however, most methods get in trouble. So despite all advances,
parallel programming is still a hard task.

Therefore, the goal of this thesis is to develop efficient parallel algo-
rithms for dynamic programming problems, a huge class of problems that
are common in scientific computing which is one field that strives to utilise
parallelism to analyse huge data sets faster. Programming parallel and even
sequential algorithms for dynamic programming problems by hand can be
tedious, so we furthermore want to automate as much of the process as
possible; ideally, the user would program a dynamic programming recursion

4

Parallel Algorithms 5

and the compiler would transform it into an efficient, parallel algorithm.

How to read this thesis

The remainder of this chapter introduces notions of parallel algorithms and
dynamic programming. We assume the reader is familiar with algorithms
and their analysis roughly up to the level of an introductory course on those
topics; the introductory first part of Cormen et al. [CLRS09] is a good way
to come up to speed. The remainder of the thesis deals with our way towards
the goal stated above, divided into three parts:

� theoretical investigation in Chapter 2 starting on page 17,

� prototypical implementation of the derived parallel algorithms and
discussion in Chapter 3 beginning on page 37 and

� a proof-of-concept compiler integration presented in Chapter 4 from
page 50.

While these three parts can be read independently of each other they are
best read in sequence.

We mark new notions and put emphasis using italic typeface. Source
code is printed in non-proportional font. We mark the end of proofs with
the customary � , whereas proof ideas or unproven statements are closed
with .

In terms of mathematical notation we try to stick to established stan-
dards and define derivations clearly. Note that boldly set variables refer to
vectors with dimension greater than one, that is i denotes a number whereas
i may represent a pair of numbers. We also consider 0 a natural number.
For reference, we have compiled a list of notations on page 69.

1.1 Parallel Algorithms

In order to talk about quality of parallel algorithms we need appropriate
notions. The following definitions have been inspired by Hoßfeld [Hoß83];
we will leave details of the machine model out, though. It suffices to say that
we assume a model similar to PRAM proposed by Fortune et al. [FW78],
that is a set of p ∈ N+ ordinary RAM machines that operate on shared
memory. The machines use the same clock, that is they execute their re-
spective next operation simultaneously. We say that every RAM has its
own thread ; a p-PRAM can execute at most p threads in parallel. For the
sake of simplicity, we allow simultaneous memory reads and writes. Using
established acronyms, we assume a MIMD1 machine with CRCW2 memory

1Multiple instruction, multiple data.
2Concurrent read, concurrent write.

Parallel Algorithms 6

policy [Par87]. We furthermore assume as usual that all operations, includ-
ing basic arithmetic operations as well as memory accesses, take constant
numbers of clock cycles.

First of all, we have to fix what a parallel algorithm is.

1 Definition: Parallel Algorithm
A parallel algorithm A on p processors is an algorithm that can execute up
to p statements in parallel. The number of processors p is known to A and
its behaviour is uniform in p. We write Ap to denote an instance of A with
fixed processor number and A(x) for the result of algorithm A on input x.

The phrase “uniform in p” is hard to define rigorously. We mean that a
parallel algorithm should work essentially in the same way regardless of
p. What we want to forbid in particular is that a parallel algorithm detects
p = 1 and executes an efficient sequential algorithm instead of the code used
for parallel execution. While this is certainly a valid strategy in practise,
it gets in the way of algorithm analysis, in particular comparisons between
parallel and sequential algorithms.

We write algorithms in Javaesque pseudo code with some notable exten-
sions following Cormen et al. [CLRS09].

� Global constant P contains the number of processors p available in
total.

� Keyword spawn causes the annotated expression to be evaluated in
a new thread, that is on a processor other than the current thread’s
one. The effect of spawn is not specified if there are not enough free
processors for all spawn commands in a given clock cycle.

� Keyword sync causes the current thread to wait until all threads it
has spawned have terminated.

As common, we assume that we have exclusive access to the machine at
hand, that is we can make full use of all processors.

2 Definition: Runtime
The runtime of Ap on input x, denoted by TimeAp(x), is defined by the
number of clock cycles until all threads of Ap executed on x terminate.
Similar to classic definitions,

TAp (n) := max
{
TimeAp(x) : |x| = n

}
is the worst-case runtime of Ap for input size n.

What we are interested in are less concrete runtimes but rather how much
faster we can be when parallelising. Therefore, we define the notion of
speedup which captures this idea.

Parallel Algorithms 7

3 Definition: Speedup
Let A be a parallel algorithm. The speedup of A in the number of processors
p is defined as

SAp(n) :=
TA1 (n)

TAp (n)
.

We call

SAp(∞) := lim inf
n→∞ SAp(n)

the asymptotic speedup of A on p processors.

It is clear that speedup is bounded by the number of processors if an algo-
rithm is defined uniformly in p3.

4 Lemma: Maximum Speedup
Let A be a parallel algorithm. Then,

SAp 6 p

for all p ∈ N.

As usual, we will let input size n go to infinity in order to employ asymp-
totics machinery. We restrict ourselves to constant numbers of processors p,
though, because our goal is to provide theoretic results that have immediate
application in practise, that is enable programmers to utilise the amount of
parallelism possible on their office machines with few cores. This motivates
the following definition of scalable algorithms.

5 Definition: Scalability
Let A be a parallel algorithm and let g : N → R be an arbitrary function.
We call

A g-scalable :⇐⇒ ∀
p∈N

SAp(∞) > g(p).

A problem is called g-parallelisable if it can be solved by an g-scalable
parallel algorithm.

Rephrasing, our goal is to find p-scalable parallelisations for common prob-
lems, that is parallel algorithms that are asymptotically optimal with respect
to Lemma 4. Note that we are looking for speedups by at most constant
factors. This makes our results stronger than usual O-analysis but the in-
vestigation may also be more technically involved.

Note that Definition 5 does not require parallel algorithms to be effi-
cient in the usual sense, that is have the same asymptotic runtime as known

3Note that this is not necessarily true if memory hierarchies are considered.

Parallel Algorithms 8

sequential algorithms for the same problem. In particular, brute force al-
gorithms for problems that are not known to have polynomial algorithms
might have efficient parallelisations. In order to compare parallel algorithm
A with a sequential counterpart B in a fair way, we want to allow A to
cause only overhead that does not change asymptotic runtime for the worse
compared to B. For this purpose, we introduce the following notion.

6 Definition: Foundedness
Let A be a parallel and B a sequential algorithm for the same problem, i.e.
Ap(x) = B(x) for all inputs x and all p ∈ N+. We say

A is B-founded :⇐⇒ TA1 ∈ õ(TB)

where õ(f) := o(f) ∪ {g : f ∼ g }. We also say A is founded in B.

With this we can formulate an even stronger goal: we want to find p-scalable
parallel algorithms that are founded in optimal—or at least efficient4—
sequential algorithms, that is in essence p · TAp ∼ TB should hold for all
p. We call the quotient TB/TAp also real speedup of A with respect to B.

Let us consider a small example before we continue.

7 Example: Parallel Evaluation of Sums
Assume we want to compute the sum

S(n) =

n∑
i=1

i.

See Figure 1.1 on the next page for some algorithms that solve this problem.
The first, sum_seq, is the naive sequential way to compute S(n); counting
only arithmetic operations on elements for the sake of simplicity, it takes
T ss(n) = n− 1 time.

Now consider its parallel version sum_par. The idea is to have thread w
sum all i for which i mod p = w. The call of w with i==1 finishes last and
performs dn/pe−1 additions inside the loop; then, p additions aggregate the
threads’ results. So, we have T sp

p (n) = dn/pe+ p− 1. Computing speedup

Ssp
p(n) =

T sp
1 (n)

T sp
p (n)

=
n⌈

n
p

⌉
+ p− 1

>
n

n+1
p + p− 1

−−−−→
n→∞ p

we get that Ssp
n(∞) > p, that is sum_par is p-scalable. Furthermore, with

T ss(n)

T sp
1 (n)

=
n− 1
n
−−−−→
n→∞ 1

4Whatever that means in your context.

Parallel Algorithms 9

� �
int sum_seq (int n) {

int sum = 0 ;
for (int i = 1 ; i <= n ; i++) {

sum += i ;
}
return sum ;

}

int sum_par(int n) {
return w(n , P) ;

}

int w(int n , int p) {
int r e s t = 0 ;
i f (p > 1) {

r e s t = spawn w(n , p−1)
}

int sum = 0 ;
for (int i = p ; i <= n ; i += p) {

sum += i ;
}

sync ;
return r e s t + sum ;

}

int sum_gauss (int n) = {
return n�(n−1)/ 2 ;

}�

Figure 1.1: Three algorithms that compute

∑n
i=1 i.

Parallel Algorithms 10

we see that the additional effort of result aggregation vanishes for large n;
sum_par is founded in sum_seq. If we compare sum_par with the more
sophisticated sum_gauss, on the other hand, we get with

T sg(n)

T sp
1 (n)

=
3
n
−−−−→
n→∞ 0

that sum_par on one processor is asymptotically slower than sum_gauss,
that is sum_par is not founded in sum_gauss.

An Aside: Other Criteria For Good Parallel Algorithms

Many approaches to gauge quality of parallel algorithms have been devel-
oped over the decades; a complete treatment of the literature is not feasible
here. We find some notions worth mentioning, though.

First of all, there is the work-depth model [Ble96]. Work W is the
number of operations that have to be executed by a parallel algorithm A,
so essentially W = TA1 . Depth D is the amount of work that no degree
of parallelisation can do away with; you can say that D = TA∞. Brent has
proven an upper bound for special circumstances which is together with the
trivial lower bound sometimes called Brent’s Law [Bre74]:

W

p
6 TAp <

W

p
+D.

These bounds inform us that any parallel algorithm that takes more time
than W/p + D is certainly not at all optimal. Note that our definition of
scalability is orthogonal to that; a p-scalable algorithm can be worse than
Brent’s upper bound if D ∈ o(W). Our definitions can be applied to more
general settings than Brent’s Law, though.

An assumption often made in the context of the work-depth model is
the parallel slackness condition [FLR98]

W

D
� p ⇐⇒ W � D

which essentially states that there is enough parallelisable work to keep all
processors busy with. Since we can only expect p-scalable algorithms for
D ∈ o(W)5, parallel slackness is implied in our setting as we let n→∞. If
the condition is not valid even for big n, however, p-scalable algorithms are
impossible.

Our notion of foundedness with respect to a sequential algorithm is
closely related to work-efficiency [Ble96] which can be stated in our terms
as

p · TAp ∈ Θ(TB)
5If D ∈ Ω(W) ⇐⇒ TA∞ ∈ Ω(TA

1) then by definition SA
p (∞) ∈ o(p) as p→∞.

Dynamic Programming 11

for parallel algorithm A and sequential algorithm B. Note that overhead by
a constant factor is still allowed; this is weaker than B-foundedness together
with p-scalability.

In parallel complexity theory, a number of classes have been proposed
to characterise the set of efficiently parallelisable problems. The most well
known is NC which contains all problems that can be solved by a PRAM
with polynomially many processors in polylogarithmic time [Par87]. This
definition is not uncontroversial and other notions have been put forth that
concentrate on work-efficiency in the above sense [KRS90]. In general, par-
allel complexity theory asks how many processors you need to solve a given
problem up to some instance size very quickly; in contrast, we ask how
quickly you can solve a given problem with a given number of processors.

1.2 Dynamic Programming

The term dynamic programming has been coined—and the corresponding
theory been founded—by Richard Bellman [Bel57]. He used his theory to de-
scribe and analyse multi-stage decision processes in order to overcome the
curse of dimensionality, that is state space explosion in high-dimensional
problems, the prime adversary in scientific computing at the time. Recur-
rences he dealt with would look like this:

f(x) = max
06y6x

[
g(y) + h(x− y) + f(ay+ b(x− y))

]
for g,h some known functions and a,b ∈ [0, 1), and many more complex
forms. The core of Bellman’s investigation was the principle of optimality,
later named after him, which he phrased as follows:

“ An optimal policy has the property that whatever the ini-
tial state and initial decision are, the remaining decision must
constitute an optimal policy with regard to the state resulting
from the first decision. ”

Since Bellman considered continuous domains, his algorithmic investigations
were restricted to numerical algorithms.

Nowadays in computer science, the term dynamic programming is usu-
ally associated with discrete problems that can be solved by first computing
optimal solutions to partial problems recursively and then combining them
to an optimal solution of the original problem; see for instance Cormen et
al. [CLRS09] for a host of such problems. This sounds similar to Divide &
Conquer, another ubiquitous algorithmic, recursive strategy, but there is a
crucial difference: in dynamic programming, solutions of smaller subprob-
lems are needed for many larger subproblems. Therefore, dividing does not
imply conquering for dynamic programming problems at all: computing a

Dynamic Programming 12

given dynamic programming recursion directly typically takes exponential
effort, whereas divide & conquer recursions often lead to efficient algorithms.

Not surprisingly we will stick closer to the modern computer science
point of view on dynamic programming because we also want to deal with
kinds of problems that Bellman did not consider, in particular decision pro-
cedures. Another problem with Bellman’s original treatment is that—as
anecdotal evidence [Sni78, Mor82] indicates—the precise meaning of Bell-
man’s principle of optimality is mostly unclear and several conflicting in-
terpretations have been put forth. The core properties concerning actual
computation seem to be that

� problem instances can be partitioned into independently solvable sub-
problems,

� combining solutions of subproblems yields solutions of the original
problem,

� if such a combination merges optimal solutions for the respective sub-
problems the resulting solution is optimal for the original problem
and

� subproblems have the same property.

For the purpose of this work we do not care too much about all that as
we do not attempt to solve some optimisation problem. In fact, we do not
even care what a given recursion computes at all. All we want to do is
find scalable parallel evaluation schemes for recursions of this type. We are
therefore mainly interested in which subproblem depends on which others.
To this end we propose a slightly different working definition of dynamic
programming recursions; the task of finding a function that fits both a given
problem and our definition is outside of this work’s scope.

8 Definition: Computation Dependency
For any set X we call a relation γ ⊆ X2 whose transitive closure γ+ is
irreflexive, i.e.

(x,y) ∈ γ+ =⇒ x 6= y,

a computation dependency relation in X. A function f on X is compatible
with γ if

(x,y) ∈ γ ⇐⇒ computation of f(x) directly requires6 f(y).

In this case, we also write γf for γ.
6Think of f as recursive program; (x,y) ∈ γf then means that computation of f(x)

causes a recursive call f(y).

Dynamic Programming 13

fib(4)

fib(2)

fib(0) fib(1)

fib(3)

fib(1) fib(2)

fib(0) fib(1)

(a)

5 4

3 2

1 0

γfib :

...
...

Γ+fib(4)

Γfib(4)

(b)

Figure 1.2: Recursion tree of fib(4) (a) and the corresponding dependency
relation (b).

Now we define the set of direct computation dependencies of x as

Γ(x) := {y : (x,y) ∈ γ }

and the set of computation dependencies of x as

Γ+(x) :=
{
y : (x,y) ∈ γ+

}
.

If f is compatible with γ we also write Γf and Γ+f and consider zipped versions

Γ̃f(x) := { (y, f(y)) : y ∈ Γf(x) } and

Γ̃+f (x) :=
{
(y, f(y)) : y ∈ Γ+f (x)

}
for notational convenience.

Let us look at a small example to clarify what we do here.

9 Example: Computation Dependencies of Fibonacci Numbers
Consider the recursive definition of the infamous Fibonacci numbers:

fib(n) =


0 ,n = 0
1 ,n = 1
fib(n− 2) + fib(n− 1) ,n > 2

If implemented like this, the computation of fib(n) can be viewed as a tree;
see Figure 1.2a for an example. From that, it is easy to read off γfib as
shown in Figure 1.2b. Note also that

Γ̃fib(4) = { (3, 2), (2, 1) }

and

Γ̃+fib(4) = { (3, 2), (2, 1), (1, 1), (0, 0) } .

Dynamic Programming 14

Now we have all tools necessary to give a concise definition of dynamic
programming recursions.

10 Definition: Dynamic Programming
Let

In :=
{
i ∈ Nk : 0 6 ij 6 nj − 1 for all j = 1, . . . ,k

}
with n ∈ Nk and k ∈ N+ a k-dimensional, bounded index domain and
γ ∈ In × In a computation dependency relation. Let furthermore D be an
arbitrary value domain.

A dynamic programming recursion is a recursion d : In → D of the
form

d(i) := f(i, Γ̃d(i))

where f : In × 2In×D → D and d is compatible with γ, that is f(i, Γ̃d(i))
does not directly depend on values of d other than the ones provided by
Γ̃d(i). We call f the cell function7 of d. Note that d might depend on
problem parameters other than index i; these are assumed to be given as
global values for the sake of clarity.

Many dynamic programming representations for typically encountered de-
cision or optimisation problems match the proposed definition.

11 Example: Edit Distance
The edit-distance [Gus97] between two words v ∈ Σn and w ∈ Σm is given
by e(n,m) where e is defined by

e(i1, i2) :=



0 , i1 = i2 = 0
i2 , i1 = 0∧ i2 > 0
i1 , i1 > 0∧ i2 = 0

min


e(i1 − 1, i2) + 1
e(i1, i2 − 1) + 1
e(i1 − 1, i2 − 1) + [vi1−1 6= wi2−1]

, else

for all (i1, i2) ∈ I = [0..n] × [0..m]. Note that f from Definition 10 is
essentially the right-hand side of the definition of e and the computation
dependencies are given by the parameters of the recursive calls, that is

Γe(i1, i2) = { (i1 − 1, i2), (i1, i2 − 1), (i1 − 1, i2 − 1) } ∩ I

for all (i1, i2) ∈ I with i1, i2 > 0 and Γe(i1, i2) = ∅ otherwise. As a concrete
example, consider the distance of the strings v = bald and w = boulder;

7The image of d on In, that is
(
d(i)

)
i∈In

, is a k-dimensional matrix.

Related Work 15

computing e(4, 7) requires the following matrix of values:

b o u l d e r

0 1 2 3 4 5 6 7
b 1 0 1 2 3 4 5 6
a 2 1 1 2 3 4 5 6
l 3 2 2 2 2 3 4 5
d 4 3 3 3 3 2 3 4

Note the highlighted path which leads to the final result e(4, 7) = 4 and
corresponds to the alignment

b o u l d e r

b a − l d − −
.

Dynamic programming recursions do not imply efficient algorithms per
se: if computed in a straight-forward way we might have to evaluate f
exponentially often; consider for example the recursive definition of the fa-
mous Fibonacci numbers. A way of computing such functions efficiently
is the very algorithmic idea that has become one of the most fundamental
algorithmic design patterns and is inseparable from the term dynamic pro-
gramming today: filling a matrix with solutions of all subproblems, also
called bottom-up strategy. This leads to clear polynomial time algorithms
for many important problems such as string edit distance, all-pair short-
est paths, longest common subsequence, forward-backward algorithm and
many more. This work aims at offering insight into how parallel versions of
the canonical algorithm for dynamic programming in an almost general and
uniform way can work.

For a more thorough introduction to dynamic programming in the mod-
ern computer science sense and a number of concrete examples see Cormen
et al. [CLRS09].

1.3 Related Work

Considering the popularity of both parallel algorithms and dynamic pro-
gramming, there is a vast amount of work on both; we therefore give only
examples of the available literature.

Solving recursions in parallel is obviously a matter of excitement and has
been studied both in complexity theory [IT94] and in practise [NCTT09].
There are also approaches to achieve parallelisation using robust program-
ming language primitives [MAFC11, FLR98]. Divide & Conquer and Branch
& Bound as natural candidates for parallelisation have also been studied thus
[RR99, TP96].

There is general work about parallel dynamic programming in complex-
ity theory [Bra94, Ryt88]. Furthermore, there are many instances of solving

Related Work 16

specific problems in parallel, both in complexity theory [EI96] and algo-
rithms [ARQ93, ACDS03], some of which are close to our own ideas.

On the other hand, there are approaches to automatically generating
efficient sequential code for solving dynamic programming problems given
in some abstract representation [SJG11, PBS11].

2
Theoretical Groundwork
In this chapter we investigate how well dynamic programming recursions in
our sense can be computed in parallel with respect to the notions defined
in the previous chapter, that is in theory. For the sake of simplicity, we
restrict ourselves to two-dimensional domains in the form of matrices, i.e.
I = [0..n1 − 1] × [0..n2 − 1]. We will state further assumptions that render
the huge space of possible recursions more amenable and introduce some
structure we can exploit. Keep in mind that we are looking for parallel
algorithms that are as general as possible for we want to select and apply
them algorithmically, given dynamic programming recursions.

We first introduce some notions to classify dynamic programming recur-
sions by the structure of their dependency relations.

12 Definition: Dependency Areas
In the spirit of Definition 10, let

In :=
{
i ∈ N2 : ij 6 nj − 1 for j = 1, 2

}
with n ∈ N2 two-dimensional, bounded set of indices. We define the follow-
ing dependency areas for i ∈ I that partition the matrix around i; see also
Figure 2.1 on the following page.

L(i) := { j ∈ I : j1 = i1, j2 < i2 }

UL(i) := { j ∈ I : j1 < i1, j2 < i2 }

U(i) := { j ∈ I : j1 < i1, j2 = i2 }

UR(i) := { j ∈ I : j1 < i1, j2 > i2 }

R(i) := { j ∈ I : j1 = i1, j2 > i2 }

DR(i) := { j ∈ I : j1 > i1, j2 > i2 }

D(i) := { j ∈ I : j1 > i1, j2 = i2 }

DL(i) := { j ∈ I : j1 > i1, j2 < i2 }

17

18

DL D DR

UL U UR

L R

Figure 2.1: Dependency areas of the marked cell.

The set of all areas is denoted by

Areas := {L,UL,U,UR,R,DR,D,DL } .

We now consider several kinds of dynamic programming problems and in-
vestigate in which way they can be parallelised. In order to keep things
appropriately clear, we restrict ourselves to such recursions that can be
characterised nicely in terms of the areas we just defined; this is useful for
the upcoming theoretic treatment as well as automated classification of dy-
namic programming recursions given as source code1. More specifically, for
d a dynamic programming recursion over I with cell function f and compu-
tation dependencies Γd, we want Γd(i) to have the same form for all indices
i ∈ I (A2) and its transitive closure Γ+d (i) should cover whole areas (A1).
We also want to assume for technical reasons that I is completely used (A3)
and that the runtime of cell function f is independent of its parameters (A4).
In formal terms, we make the following four assumptions:

� Γd is area-complete, i.e.

Γ+d (i) ∩ A(i) 6= ∅ =⇒ A(i) ⊆ Γ+d (i) (A1)

for all i ∈ I and A ∈ Areas.

� Γd is uniform, i.e.

∃
i∈I

Γ+d (i)∩A(i) 6= ∅ =⇒ ∀
i∈I

A(i) = ∅ ∨ Γ+d (i)∩A(i) 6= ∅ (A2)

for all A ∈ Areas.
1We will need to analyse Γ+d algorithmically, so it can not be too complicated.

19

(a) Case (C1) (b) Case (C2) (c) Case (C3)

Figure 2.2: Cases of dynamic programming recursions. The dependencies
Γ+d of the marked cell are highlighted.

� All partial results of d are needed, i.e.

Γ+d ((n1,n2)) = I \ { (n1,n2) } . (A3)

� Runtime of cell function f is independent of its parameters, i.e.

Timef
(
i, Γ̃d(i)

)
= Timef

(
j, Γ̃d(j)

)
(A4)

for all i, j ∈ I. We write T f in short.

These assumptions seem to be very strong. They still allow for a rich class of
problems, though, and can be weakened considerably without invalidating
the upcoming results. For the sake of keeping our proofs nice and tidy we
stick to the assumptions as proposed; refer to Section 2.4 starting on page 30
for additional remarks.

Now we have to utilise our setup towards creating a manageable set
of different kinds of recursions we have to investigate. First of all, we can
disregard many combinations of dependency areas because we get from (A1)
and (A2) that

L(i) ⊆ Γ+d (i) =⇒ R(i) ∩ Γ+d (i) = ∅;

otherwise we had cyclic dependencies, contradicting the definition of depen-
dency relations. Similar arguments work for all other combinations of oppo-
site areas. In fact, it is up to symmetry—rotation and reflection—sufficient
to distinguish the following cases of dynamic programming recursions, vi-
sualised in Figure 2.2:

∀
i∈I
Γ+d (i) ⊆ L(i) ∪ UL(i) ∪ U(i) , (C1)

∀
i∈I
Γ+d (i) ⊆ UL(i) ∪ U(i) ∪ UR(i) , (C2)

∀
i∈I
Γ+d (i) = L(i) ∪ UL(i) ∪ U(i) ∪ UR(i) , (C3)

20

(a) (b) (c) (d)

Figure 2.3: Dependency area patterns that can not (a, b) respectively can
(c, d) occur; see proof of Theorem 13 on the current page.

Note that the three cases are not disjoint; in particular, a recursion might
well belong to both case (C1) and (C2), for example if Γ+d (i) = L(i). The
case distinction is complete in our setting, though.

13 Theorem: Complete Case Distinction
Let d be a dynamic programming recursion according to Definition 10 on
page 14. Under (A1) and (A2), at least one of (C1), (C2) and (C3) applies
to d up to symmetry.

Proof
The proof rests on three observations.

1. Because of (A1) and (A2), no two opposing areas can overlap with Γ+d ;
otherwise γ+d would have circles. Therefore, Γ+d can overlap at most
two small (i.e. two out of L, U, R and D) and two big (i.e. two out of
UL, UR, DR and DL) areas, respectively.

2. A pattern as depicted in Figure 2.3a can not occur; because of (A2),
the highlighted cells require those not highlighted.

3. Similarly, a pattern as shown in Figure 2.3b can not occur.

Therefore, all possible patterns of three areas match Figure 2.3c or 2.3d; up
to rotating the matrix, these correspond to (C1) and (C2), respectively. Four
areas can only be placed using either of those plus an area of the missing
kind; either case leads to (C3) after rotating. More than four areas can not
occur and all possibilities of placing less than three are already subsumed
in the derived cases. �

We can therefore restrict our investigations to those three cases.
Before we discuss parallel computation of two-dimensional dynamic pro-

gramming recursions, let us recall how to compute them sequentially. It is
typically done by filling the matrix corresponding to index set I row by row,
that is as shown in Figure 2.4 on the next page; see Figure 2.5 for details.
We call this algorithm R in the sequel. Note that it corresponds to the
bottom-up algorithm in Cormen et al. [CLRS09].

21

Figure 2.4: Row by row filling algorithm R after some steps.

� �
S r ow f i l l (T inA , T inB) {

S [] [] t ab l e = new S [inA . s i z e] [inB . s i z e] ;

for (int i=0 ; i<inA . s i z e ; i++) {
for (int j=0 ; j<inB . s i z e ; j++) {

tab l e [i] [j] = f (i , j , t ab l e) ;
}

}

return t ab l e [inA . s i z e − 1] [inB . s i z e − 1] ;
}�

Figure 2.5: Row by row filling algorithm R of dynamic programming matrix
with f the cell function.

Diagonal Frontier 22

14 Lemma: Sequential Row Filling
Any two-dimensional dynamic programming recursion with cell function f
over I = [0 : n1 − 1] × [0 : n2 − 1] that conforms to either of cases (C1) to
(C3) can be computed with algorithm R in time Θ(n1n2T f).

Proof
Correctness of R is immediately clear; all three cases are top-left oriented
and the matrix can therefore be filled from left to right and top to bottom.
For future reference, we give the precise runtime. Let

� ca be the constant runtime of creating a new array,

� cfi be the constant runtime of initialising a for loop,

� cfc be the constant runtime of managing the loop counter in a for
loop iteration and

� cm be the constant runtime of one array access.

Then, the runtime of R is given by

T R(n1,n2) = ca + cfi + n1(cfi + n2(T f + cm + cfc) + cfc) + cm
= n1n2 (T

f + cm + cfc)︸ ︷︷ ︸
C0

+n1 (cfi + cfc)︸ ︷︷ ︸
C1

+(ca + cfi + cm)︸ ︷︷ ︸
C2

∈ Θ(n1n2T f) .
�

Under (A3), no algorithm can be significantly faster as f has to be computed
for all cells. The parallel schemes we investigate now follow the idea of R
closely; we will therefore use R as gold standard to compare our parallel
algorithms with.

2.1 Case (C1): Diagonal Frontier Approach

We now consider dynamic programming recursions according to case (C1),
i.e.

Γ+d (i) ⊆ L(i) ∪ UL(i) ∪ U(i)

for all i ∈ I.
15 Example: Edit Distance (continued)

Recall the edit distance problem as given in Example 11 on page 14. Note
that

Γe(i1, i2) ⊆ { (i1 − 1, i2), (i1, i2 − 1), (i1 − 1, i2 − 1) }

holds for all (i1, i2) ∈ I. Consequently we have Γ+e (i1, i2) = L(i1, i2) ∪
UL(i1, i2) ∪ U(i1, i2); e does indeed conform to case (C1).

Diagonal Frontier 23

Figure 2.6: Diagonal frontier scheme DF after some steps.

We propose the diagonal frontier scheme (DF) to achieve p-scalable and
R-founded parallelisation of case (C1) recursions. The key observation is
that in this case, matrix cell (i, j) does not depend on cells in UR(i, j).
Algorithm R, however, does compute all those cells before (i, j). We now
exploit that f(i, j, _) can be computed as soon as (i− 1, j) and (i, j− 1) are
done, assuming a row by row filling point of view. This can be done by
filling rows independently, each row lagging behind its predecessor by one
cell. See Figure 2.6 for a visualisation.

Of course we can only fill as many rows in parallel as we have processors.
See Figure 2.7 on the following page for a detailed implementation. Algo-
rithm R is still vaguely visible; workers fill their partial matrix following the
same principle. Their respective first row has to be dealt with separately
as they have to spawn their succeeding colleague. Note that because of
assumption (A4) workers can never overtake each other; the algorithm is
therefore correct.

16 Theorem: (C1) Parallelised by Diagnoal Frontier Scheme
The diagonal frontier scheme DF is

1. p-scalable and

2. R-founded

for dynamic programming recursions of type (C1) under assumption (A4)
on page 19.

Proof
In addition to the names designated in the proof of Lemma 14 on the pre-
ceding page let

� cif the constant cost of evaluating an if with an integer comparison,

� csp the constant cost of spawning a new thread and

Diagonal Frontier 24

� �
S d i ag f r on t (T inA , T inB) {

S [] [] t ab l e = new S [inA . s i z e] [inB . s i z e] ;

worker (tab le , 0) ;

return t ab l e [inA . s i z e − 1] [inB . s i z e − 1] ;
}

void worker (S [] [] tab le , int p) {
i f (p < tab l e . l ength) {

t ab l e [p] [0] = f (p , 0 , t ab l e) ;

i f (p < P−1) {
spawn worker (tab le , p+1) ;

}

for (int j=1 ; j<inB . s i z e ; j++) {
tab l e [p] [j] = f (p , j , t ab l e) ;

}

for (int i=p+P; i<inA . s i z e ; i+=P) {
for (int j=0 ; j<inB . s i z e ; j++) {

tab l e [i] [j] = f (i , j , t ab l e) ;
}

}

sync ;
}

}�

Figure 2.7: Diagonal-frontier parallel filling scheme DF of dynamic program-
ming matrix with f the cell function.

Diagonal Frontier 25

� csy the constant cost of syncing, disregarding the time actually spent
on waiting.

Clearly, DF’s runtime consists of initialisation, result propagation and the
time the longest running worker needs, i.e.

T DF
p (n1,n2) = ca +max

{
[n1 > i] · Tw(i)

p (n1,n2) : 0 6 i < p
}
+ cm.

Assuming n1 > p, the finishing time of worker i is given by the time before
it is spawned plus the time it runs, that is

Tw(i)
p (n1,n2) = i · (cif + T f + cm + cif + csp)

+ cif + T
f + cm + cif + [i < p− 1] csp

+ cfi + (n1 − 1) · (cfc + T f + cm)

+ cfi +
n1 − i− 1

p
· (cfc + cfi + n2 · (cfc + T f + cm))

+ csy

= i · (2cif + T f + cm + csp)
+ 2(cif + cfi) + T f + cm + [i < p− 1] csp + csy

+ (n2 − 1) · C0 +
n1 − i− 1

p
· C1 +

n1 − i− 1
p

· n2 · C0.

The runtime of DF on one processor follows immediately; we get

T DF
1 (n1,n2) = ca + T

w(0)
1 (n1,n2) + cm

=

C3︷ ︸︸ ︷
ca + 2(cif + cfi) + T f + cm + csy

+ (n2 − 1) · C0 + (n1 − 1)C1 + (n1 − 1)n2C0.

ad 1. We consider the quotient of T DF
1 and T DF

p for n1,n2 → ∞. First, note
that the maximum in DF’s runtime can be overestimated by choosing
i = 0, considering waiting time as if i = p− 1 and assuming p > 1. In
total, we get

T DF
p (n1,n2) 6 C4 + (n2 − 1)C0 +

n1 − 1
p

· C1 +
n1 − 1
p

· n2 · C0

∈ Θ(n1n2T f)

where

C4 := p · (cif + T f + cm + cif + csp) + 2cfi + csy.

Now we consider the quotient:

T DF
1 (n1,n2)
T DF
p (n1,n2)

>
C3 + (n2 − 1) · C0 + (n1 − 1)C1 + (n1 − 1)n2C0

C4 + (n2 − 1)C0 +
n1−1
p · C1 +

n1−1
p · n2 · C0

.

Row Splitting 26

We can underestimate the quotient even more by dropping the numer-
ator’s first three summands as they are non-negative. This yields:

T DF
1 (n1,n2)
T DF
p (n1,n2)

>
(n1 − 1)n2C0

C4 + (n2 − 1)C0 +
n1−1
p · C1 +

n1−1
p · n2 · C0

=
p · C0

p
(n1−1)n2

· C4 +
p(n2−1)
(n1−1)n2

C0 +
1
n2
· C1 + C0

−−−−−−→
n1,n2→∞ p.

So we have shown that SDF
p(∞) > p for all p ∈ N+. � 1.

ad 2. Recall from the proof of Lemma 14 on page 22 that

T R(n1,n2) = n1n2C0 + n1C1 + C2.

We consider the quotient of T DF
1 and T R for n,m to ∞. We get

T DF
1 (n1,n2)
T R(n1,n2)

=
C3

T R(n1,n2)
+
(n2 − 1)C0

T R(n1,n2)
+
(n1 − 1)C1

T R(n1,n2)
+
(n1 − 1)n2C0

T R(n1,n2)
.

Clearly, the first three summands converge to 0 as T R ∈ Θ(n1n2T f).
For the last summand, we get

(n1 − 1)n2C0

n1n2C0 + n1C1 + C2
=

(
1− 1

n1

)
C0

C0 +
1
n2
C1 +

1
n1n2

C2

−−−−−−→
n1,n2→∞ 1

and therefore T DF
1 ∈ õ(T R). � 2.

As both statements have been shown the theorem is proven. �

We can conclude that we found a—in our terms—optimal parallelisation of
case (C1) dynamic programming recursions.

2.2 Case (C2): Row Splitting Approach

We now consider dynamic programming recursions according to case (C2),
i.e.

Γ+d (i) ⊆ UL(i) ∪ U(i) ∪ UR(i)

for all i ∈ I.

Row Splitting 27

Figure 2.8: Row splitting scheme RS after some steps.

17 Example: Single-Source Shortest Paths
Given a directed weighted graph G = (V,E, c), the single-source shortest
path problem is to find shortest paths from a given source s ∈ V to all
other vertices. The Bellman-Ford algorithm is a way of solving it even
if c has negative values [CLRS09]. It can be expressed as a recursion over
I = [0..n]× [1..n], assuming that V = [1..n] and c(i, i) = 0 for all i ∈ V:

bf(i, j) =


0 , i = 0∧ j = s∞ , i = 0∧ j 6= s
min
k∈V

(
bf(i− 1,k) + c(k, j)

)
, else

Note that bf(n, i) is the length of the shortest path from s to i; the whole
last matrix row is the result. As for cell dependencies, we note that

Γbf(i, j) =

{
∅ , i = 0
{ i− 1 }× [1..n] , i > 0

and therefore bf is a (C2) dynamic programming recursion.

We propose the row splitting scheme (RS) to compute such dynamic
programming recursions in parallel. The idea here is simple: as elements do
not depend on other elements in the same row, we can distribute computa-
tion of one row over processors in any way we like, for example as shown
in Figure 2.8. While leading to a scheme closer to R than DF, this implies
that we have spawning and syncing overhead per row, causing more over-
head than DF. It is still only linear overhead which vanishes for large inputs,
though. See Figure 2.9 on the next page for an implementation.

18 Theorem: (C2) Parallelised by Row Splitting Scheme
The row splitting scheme is

Row Splitting 28

� �
S rowsp l i t (T inA , T inB) {

S [] [] t ab l e = new S [inA . s i z e] [inB . s i z e] ;

for (int i=0 ; i<inA . s i z e ; i++) {
for (int p=0 ; p<P−1 ; p++) {

spawn worker (tab le , i , p) ;
}
worker (tab le , i , P−1) ;
sync ;

}

return t ab l e [inA . s i z e − 1] [inB . s i z e − 1] ;
}

void worker (S [] [] tab le , int i , int p) {
for (int j=p ; j<inB . s i z e ; j+=P) {

tab l e [i] [j] = f (i , j , t ab l e) ;
}

}�

Figure 2.9: Filling of dynamic programming matrix by row splitting algo-
rithm RS with f the cell function.

Row Splitting 29

1. p-scalable and

2. R-founded

for dynamic programming recursions of type (C2) under assumption (A4)
on page 19.
Proof
We reuse the abbreviations defined in the proofs of Lemma 14 on page 22
and Theorem 16 on page 23. First, we determine the runtime of RS; clearly,
initialisation and result propagation takes some constant effort, as does man-
aging each row. A row is finished when the last worker for this row finished.
Therefore, we get the following runtime:

T RS
p (n1,n2) = ca + cm + cfi + n1 · (cfc + csy + cfi) + n1 · Tmax

p (n2)

where

Tmax
p (n2) = max

{
i · cfc + (i+ [i < p− 1]) · csp + Tw(i)

p (n2) : 0 6 i < p
}

and

Tw(i)
p (n2) = cfi +

(⌊
n2

p

⌋
+ [n mod p > i]

)
· (T f + cm + cfc)

6 cfi +
n2 + 1
p

· C0.

In the special case of p = 1, this yields

T RS
1 (n1,n2) = n1n2 · C0 + n1 · (C1 + csy) + C2.

ad 1. Generous estimation yields

T RS
p (n1,n2) 6

n1(n2 + 1)
p

· C0

+ n1 · (cfc + csy + 2cfi + (p− 1)(cfc + csp))
+ C2

∼
n1n2

p
C0

so that SRS
p(∞) > p. � 1.

ad 2. Note that

T RS
1 (n1,n2) = T R(n1,n2) + n1csy

and remember that T R(n1,n2) ∈ Θ(n1n2T f), so clearly T RS
1 ∼ T R, prov-

ing that RS is R-founded. � 2.

As both statements have been shown the theorem is proven. �

So we can conclude that we found a—in our terms—optimal parallelisation
also in case of (C2) dynamic programming recursions.

Not Parallelisable Case 30

2.3 Case (C3): Not Parallelisable

We now consider dynamic programming recursions according to case (C3),
i.e.

Γ+d (i) = L(i) ∪ UL(i) ∪ U(i) ∪ UR(i)

for all i ∈ I. We do not know of natural examples for this case; this is
probably for the better given the following result.

19 Theorem: (C3) Not Parallelisable
Dynamic programming recursions of type (C3) can not be g-parallelised for
any g > 1 under assumptions (A1) and (A2) on page 18.

Proof
We show that the sequential algorithm R computes in every iteration of the
inner loop a cell that could not have been computed before, that is a cell
computed in step i depends on the result in the cell that is computed in
step i−1. That implies that R already parallelises as much as possible, thus
proving the theorem.

Let d be a dynamic programming recursion of type (C3). We use induc-
tion over I, following the execution order of R. The base case is given by cell
(0, 0); as it is the very first cell R computes it could clearly not have been
computed earlier. Now assume that for a fixed i ∈ I, all j ∈ I with either
j1 < i1 or j1 = i1 ∧ j2 6 i2 have been computed by R as early as possible
and consider the computation of f(i, j). We distinguish two cases.

j = 0: The last cell computed by R before (i, j) was (i − 1,n2 − 1).
By assumption, (i − 1,n2 − 1) ∈ Γ+d (i, 0) and it could not have been
computed earlier by induction hypothesis; therefore, R computes (i, j)
as early as possible.

j 6= 0: Similar to the first case but with (i, j− 1) ∈ Γ+d (i, j).

This concludes the proof. �

With this negative result, we have dealt with all cases of dynamic program-
ming recursions that remain in our abstract setting. The remainder of this
chapter presents some additional thoughts regarding the strong assumptions
we made, how memory hierarchies and inter-thread communication factors
in and how to apply our results to dynamic programming recursions with
more than two dimensions.

2.4 Relaxing Assumptions

There certainly are dynamic programming recursions that do not conform
to assumptions (A1) to (A4). While we claim that we cover many—maybe

Relaxing Assumptions 31

a b

c

d

(a)

d

c b

a

(b)

Figure 2.10: Example for how a dynamic programming recursion working
from the diagonal towards a corner (a) can transformed to top-left orienta-
tion and overapproximated (b).

most—relevant instances it is worthwhile to investigate the boundaries of
the approaches we have discussed.

An interesting type of recursion we seem to miss out on are those that
work from the diagonal towards a corner, for instance variants of the knap-
sack problem or finding optimal binary search trees [CLRS09]. However, if
we rotate the problem by π/4 plus appropriate multiples of π/2 they can be
overapproximated to fit one of our three cases; see Figure 2.10 for a sketch.

Assumption (A1) is very strong in that it allows us to abstract many
possible shapes of dependency relations and only consider huge areas. For
dynamic programming recursions that have strictly smaller dependencies Γ,
for instance the CYK algorithm [AU72], we overapproximate. This is not a
problem for cases (C1) and (C2); we can parallelise the more intricate cases
just in the same way as the general case we investigate. We might have to
compete with sequential algorithms other than R as it might not be optimal
anymore.

There are, however, conceivable dependency relations that are subsumed
by (C3) but for which dropping (A1) offers new possibilities; one example
is depicted in Figure 2.11 on the next page. It turns out that a recursion
of this form can be parallelised by using DF with k cells head start for
every thread. There may be many more recursions that can be parallelised
but we do not cover. Remember, though, that our goal is to recognise
parallelisability algorithmically; this is hopeless in general, therefore our
structurally simplifying assumption.

Assumption (A2) serves a similar purpose as (A1). There may be paral-
lelisable dynamic programming recursions with non-uniform dependencies

Relaxing Assumptions 32

k

Figure 2.11: A case (C3) dependency structure that can be parallelised:
cells may depend on others in UR that lie at most k columns to the right,
k a constant.

but we expect them to be very hard2 to identify in general. One could try
to set up direct evaluation of the recursion using memoisation and work-
stealing scheduling; if it is parallelisable, this should achieve at least some
speedup.

We consider (A3) a more technical assumption than the first two. You
can certainly define dynamic programming recursions that do not need the
full matrix; we claim that in such a case, an equivalent one that does so can
be found. Note that branch and bound tuning of dynamic programming
algorithms does not violate the assumption per se as it is not a priori clear
which values need not be considered.

Assuming a cell function f whose runtime Timef is independent of its
parameters in (A4) is by far the most blatant of the four assumptions—we
do not know of even one example for a dynamic programming recursion
that does not violate it! More specifically, the matrix’ top and left edge
are typically easier done than the interior. If this is the only violation we
can just adapt the assumption to state that these edge cases are not slower
than the others, bound Timef by its interior case for the analysis and all is
fine. There are, however, plenty of examples of f accessing varying numbers
of already computed values, for example CYK. Consider alternatively the
assumption of monotonicity, i.e.

i1 6 j1 ∧ i2 = j2 =⇒ Timef
(
i, Γ̃d(i)

)
6 Timef

(
j, Γ̃d(j)

)
(A4’)

for all i, j ∈ I ⊂ N2. This is clearly weaker than (A4) but covers both edge
cases and recursions like the one of CYK; in fact, we have yet to meet a
dynamic programming recursion that does not conform to it. Besides, it

2Read: impossible, as in not computable.

Considering Caches 33

is immediately clear that DF remains correct and Theorem 16 on page 23
still holds3. RS reacts in a different way. It does not care about runtime
differences of rows as DF does because it synchronises after each row, anyway.
Instead, it can become inefficient if and only if runtimes are distributed over
rows such that one thread does much more work than the others. Therefore,
cell function runtimes have to be spread out evenly if RS is to be fast; we
do not bother to formalise this rigorously.

2.5 Considering Caches

It is well known that R breaks down in the presence of a memory hierar-
chy, that is its performance is dominated by cache misses for big instances.
Assume a cache that can hold—besides control variables—the κ cells most
recently accessed and consider, for instance, the recursion from Example 11
on page 14. If κ < m + 1 about every cell computation causes two cache
misses as e(i1− 1, i2− 1) and e(i1− 1, i2) are no longer in cache. For simple
cases such as this one the effect can be mitigated significantly by subdividing
the matrix into appropriately sized chunks [LTC10].

The problem certainly exists for our parallelisation schemes as well4 and
we even face the additional challenge of ensuring correctness under memory
hierarchy. This is apparent in the case of DF; only the first thread encounters
cache misses and is thus overtaken by its fellows. Note that correctness of
RS is not in danger.

Scheme DF can be adapted to work—as best as possible—assuming mem-
ory hierarchy. Instead of filling rows completely, we apply the scheme to
blocks of size

√
κ × √κ and schedule those blocks column by column. As

whole blocks fit into cache, misses only occur for each block’s first col-
umn and the complete matrix’ first row; in total, that amounts to about
n + nm/

√
κ many misses. Note that as worker threads work row by row

cache misses are nicely distributed among them so that DF remains correct
if we handle the first row separately.

There is not much hope to account for caching in general as we might
have dynamic programming recursions with |Γd(i)| > κ, in which case any
scheme has to submit to domination by memory latency. We can therefore
only hope to provide schemes that are useful in many cases and delegate the
task of choosing suitable recursions to the individual programmer. We take
comfort in the knowledge that sequential versions can fare no better so we
can still achieve good speedups—in theory.

3The proof becomes incredibly messy, though, which is why we stuck to (A4) in the
first place.

4The attentive reader notices that DF causes less cache misses than R.

Considering Communication 34

Figure 2.12: The column filling scheme for case (C1) after some steps.

2.6 Considering Communication

Another concern with respect to real machines is communication between
threads. In above treatment we have had threads communicate implicitly
via shared memory, assuming that a memory access cost is about constant.
This is, however, not true in practise. On real multi-core machines, each
core has its own caches, some cores might share additional cache levels and
only then main memory is accessed. So far, this is no different from the
sequential case. However, we have to synchronise caches in parallel settings
which adds significantly to the time a memory access takes; if we access the
same data from several threads—as we do above—this can cause significant
overhead. We will try and quantify the effect of communication to our
parallelisation schemes; for the sake of simplicity, we count the number of
cell transfers we observe.

Consider, for instance, our algorithm DF. Every cell is written by one
thread and read by at least one other; therefore, every cell has to be com-
municated at least once. In the case of edit distance (see Example 11 on
page 14), we obtain the best case of only one transmission per cell. This
already implies Θ(n1n2) overhead; our scheme can not be expected to scale.

Fortunately, the effect can be controlled to some extent. Consider the
alternative scheme column filling (CF). We divide the matrix into p columns
and every thread fills its column row by row, giving its left neighbour the
first row as head start; see also Figure 2.12. Even though this causes linear
overhead5 we note without formal proof that CF is R-founded and p-scalable.
It is also apparent that only (p − 1)n1 cells are communicated in the case
of edit distance or similar recursions; we have avoided losing scalability in

5Remember head starts in DF caused only constant overhead.

Lifting to Higher Dimensions 35

the presence of communication cost. However, if cells rely on many cells to
the left, i.e. | Γ(i) ∩ (L(i) ∪ UL(i)) | ∈ ω(1), we have quadratic overhead yet
again.

In the case of RS we can not make a general statement as communication
overhead depends on the way we split rows and the dependencies at hand. If
cells do not depend on cells in far-away columns and we split rows into not
too small blocks, prospects are good. In general, dependencies may span all
UL or UR which makes a good splitting unlikely.

Avoiding many cell transmissions is hard in general. In the worst case,
|Γ(n1,n2)| = n1n2−1 so that the last cell alone causes a quadratic amount of
communication. However, we think that even in non-pathological settings,
a general parallel algorithm can not avoid succumbing to communication
overhead.

20 Conjecture: Unavoidable Communication Overhead
No p-scalable parallel algorithm for dynamic programming recursions that
is general for case (C1) (resp. (C2)) can achieve o(n1n2) cell transmissions
on all corresponding recursions, even if |Γ(i)| ∈ o(n1n2) for all i ∈ I.
Proof Idea
Let A be a p-scalable parallel algorithm for either case. Represent I by a
graph with n1 ·n2 nodes. Now colour the graph using p colours according to
which cells are computed by the same thread using A. It is always possible
to insert edges so that the graph has no directed cycles, no (i1, i2) ∈ I has
more than i1 + i2 incoming edges but the number of edges whose incident
nodes have different colours is in Ω(n1n2).

2.7 Lifting to Higher Dimensions

It is only natural to ask how dynamic programming recursions with more
than two parameters can be computed in parallel. We do not investigate
this in detail here but offer some thoughts on the matter.

The first remark is rather obvious: if there is a pair of parameters (ij, ik)
for which—assuming all other parameters are set to arbitrary constants—
the local two-dimensional recursion fits either case (C1) or (C2), the whole
problem can be parallelised by applying a generalisation of R on all other
parameters6 and parallelising the inner two loops by DF or RS, respectively.
By above results, this leads to a p-scalable and R-founded scheme. We
conjecture that this condition is necessary, that is to say that a dynamic
programming recursion without a suitable pair of parameters can not be
parallelised efficiently.

While valid in theory this reasoning is dangerous in practise: we create
overhead in the order of Θ(n1 · . . . · nm−1) on I ⊆ Nm which is less than

6We can reorder the parameters so that ij and ik are the innermost ones.

Lifting to Higher Dimensions 36

ideal. It is obvious that we can continue scheme DF over all parameter
borders for fitting recursions, thus eliminating most of this overhead. Deeper
investigation of these issues and characterisations for problem classes are
outside the scope of this work and shall remain open for now.

3
Prototype Implementation
In this chapter we will present prototype implementations of the parallel
algorithms devised in Chapter 2. We have encountered several challenges in
the process which we outline now.

First of all, we can not assume our algorithms run in isolation, that is
without contention. The operating system and eventual virtual machines
can preempt any thread at any time. This introduces concurrency issues
and we therefore have to synchronise more often. In particular, we can not
assume a head start is sufficient when implementing DF; we will have to
make sure a cell’s dependencies have been completed before attempting to
compute the cell itself.

Another concern is the cost of threads moving between processors. Ap-
parently, some schedulers tend to move threads often even if they are busy
all of the time, vainly trying to optimise processor utilisation. This is nei-
ther necessary nor advantageous in our case and thus causes unnecessary
overhead. We compensate for such behaviour by using a library that en-
sures threads do not move and, incidentally, can use their assigned processor
exclusively [Law12].

Additionally we have to be aware of memory hierarchy and communica-
tion effects as discussed in Sections 2.5 and 2.6 starting on page 33. We have
tried to account for such effects by implementing the schemes in different
ways; see below for the details.

Last but not least, we have decided to implement our prototypes in Java
in order to investigate whether our schemes work on a portable and prevalent
platform, namely the Java Virtual Machine (JVM). Its wide adoption also
ensures that interested readers can reproduce our results. The price we
pay is dealing with yet another layer of runtime effects introduced by the
virtual machine that are hard to quantify, thus hindering interpretation of
measured runtimes.

In the following we present the prototype implementations we devised
and compare them. Selected parts of the code are given starting on page 57;
full sources and benchmark data are available as supplemental material
[Rei12].

37

Framework 38

3.1 Framework

First of all, we define suitable abstractions for both dynamic programming
problems and solvers. Essentially, a problem has to offer methods to check
whether cells have already been computed or can be computed, and one to
compute a cell. Find the full interfaces in Listing A.1 on page 57.

Our gold standard R is implemented in the straightforward way in class
RowFill. We use it not only to compare runtimes but also to unit test the
other implementations; all are run against RowFill with several parameter
combinations a hundred times each per test run.

In order to actually compare our implementations and not the computed
problems, we choose problems for benchmarking that keep cache and com-
munication overheads at a minimum. As representative of (C1) problems
we select edit distance as given in Example 11 on page 14; it is implemented
in class EditDistance. For (C2) we have implemented a most likely not
meaningful dummy problem with similar complexity as EditDistance, that
is each cell depends only on its three neighbours in the previous row; see its
implementation in class RsDummy.

Benchmarking itself is implemented in class Benchmark. A completely
built JAR archive can be executed with a couple of command line parameters
controlling what is benchmarked. The methodology is as follows:

1. Create one solver instance per combination of implementation, number
of used processors and other parameters.

2. For every input size n ∈ S, generate N random (string) inputs.

3. For every thus created input i, benchmark all available solvers in turn.

4. Run each solver r times in succession on every input. Time is measured
individually for each run; we later discard both the fastest and the
slowest run.

We create either quadratic problems, i.e. n1 = n2 = n, or flat ones, that is
n2 = n and n1 is constant. Size n is typically in the thousands for square and
hundreds of thousands for flat problems, depending on the benchmarking
machine’s main memory size. For all schemes but CF the matrix’ height
has no observable impact on speedup; in those cases we are able to restrict
matrix height to a constant and thus benchmark for larger row sizes. We
choose N and r between five and fifteen, resulting in something between
fifty and a hundred net measurements per input size.

Those measurements are written into one file per solver and parame-
ter combination. We then use Ruby script curate_data.rb to aggregate
average empirical speedups SAp = TA1 /TAp and real speedups T R/TAp per input
size. Those are written back to text files and then plotted using gnuplot,
allowing for quick analysis.

Framework 39

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

0.5

1

1.5

2

2.5

TA1
TAp

/ T R

TAp

Input size n2

Optimum p

Some values

Figure 3.1: How to read benchmarking plots.

We have benchmarked on the following machines:

M1: Intel R
 CoreTM2Duo E4600 2.4GHz (1 socket, 2 cores à 1 thread)
L1 cache: 2× 32KiB (synchronous internal write-back)
L2 cache 2MiB (synchronous external write-back)
2× 1GiB DIMM DDR2 667MHz 1.5ns
Linux 2.6.38-13-generic #55-Ubuntu i686 i386 GNU/Linux
Sun Java HotSpotTM Server VM 20.1-b02
JavaTM SE Runtime Environment 1.6.0_26-b03

M2: Intel R
 CoreTMi7-920 2.67GHz (1 socket (NUMA), 4 cores à 2 threads)
L1 cache: 4× 32KiB (synchronous internal write-back)
L2 cache 4× 256KiB
L3 cache 8MiB (synchronous internal write-back)
3× 2GiB DIMM 400MHz 2.5ns
Linux 2.6.35-32-generic #66-Ubuntu x86_64 GNU/Linux
Oracle Java HotSpotTM 64-bit Server VM 22.1-b02
JavaTM SE Runtime Environment 1.7.0_03-b04

The most interesting results are summarised in the respective sections be-
low. A full account including instructions on how to run and evaluate1

benchmarks is available in the supplements [Rei12].

How to read the plots

The upcoming sections contain lots of plots of benchmarking results. For
clarity we have left out some elements, including individual data points and
axis labels. See Figure 3.1 for an example plot which has been annotated
with explanations.

1We have plots! Be warned, they are legion.

Implementing Diagonal Frontier 40

Regarding plot interpretation, we should note that the runtime of the
benchmarked algorithms does not depend on the concrete inputs but only
their size. Therefore, we take averages only to account for nondeterministic
runtime artefacts produced by the platform. We expect such effects to be
more insignificant as runtimes grow; thus our plots should be more accurate
the larger the inputs. The plots do not show sample variances, though; the
interested reader may want to inspect the original data [Rei12].

The data used for the printed plots contain between 12 and 34 points
each, depending on machine and whether row number was fixed. In order to
show trends more clearly, those have been smoothed by gnuplot’s function
smooth acsplines with parameter 1/1000. We have chosen the parameter
such that the original data are represented fairly; nevertheless, some features
may be artefacts of the smoothing process.

3.2 Implementing the Diagonal Frontier Scheme

When implementing DF, we have to take care that threads do not overtake
each other. We do this by checking explicitly whether the next cell can be
computed. In the most simple case, we actively wait on every cell we want
to compute; we call this implementation CellCheck (cf. page 58). Because
active waiting may be harmful, we have also tried putting threads to sleep for
some time when a cell can not be computed, hoping that the other threads
catch up in the mean time, and to wait on some synchronised gate until
another thread notifies; we call these implementations CellCheckSleep (cf.
page 58) and CellCheckWait (cf. page 59), respectively. The performance
of those three can be seen in Figure 3.2 on the next page; it is clearly not
convincing even for two processors.

The reason is somewhat obvious: even if threads do not overtake each
other—an effect we can not control in any case—we check computability for
every cell. Given that our example cell function is not very complicated,
checking whether the needed cells have already been computed is not a
vanishing effort. Therefore, we introduce a hard head-start bound: we divide
each row in blocks of size k, with k a fixed parameter of the scheme. When
a thread wants to compute the first cell of some block, it checks whether the
block’s last cell can be computed and waits if not. Thus, we do not have to
perform any checks for the other cells in the block due to the structure of
Γ+ we can assume in (C1). We call this implementation BlockCheck with
variants similar to CellCheck (cf. pages 59ff). The resulting performance
is depicted in Figure 3.3 on page 42; note that the choice of k did not seem
to have a big influence if not too small. These variants seem to fare better
than those of CellCheck.

As discussed in Section 2.6 on page 34 we suspect that data synchro-
nisation between threads is an important factor in parallel performance.

Implementing Diagonal Frontier 41

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

0.5

1

1.5

2

2.5

(a) Speedup on two cores

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

0.5

1

1.5

2

2.5

(b) Real speedup on two cores

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

1

2

3

(c) Speedup on three cores

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

1

2

3

(d) Real speedup on three cores

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

1

2

3

4

(e) Speedup on four cores

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

1

2

3

4

(f) Real speedup on four cores

Figure 3.2: Benchmarking results of CellCheck , CellCheckSleep
and CellCheckWait on M2 against input size n1 = n2. Note the opti-
mum .

Implementing Diagonal Frontier 42

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

0.5

1

1.5

2

2.5

(a) Speedup on two cores

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

0.5

1

1.5

2

2.5

(b) Real speedup on two cores

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

1

2

3

(c) Speedup on three cores

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

1

2

3

(d) Real speedup on three cores

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

1

2

3

4

(e) Speedup on four cores

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

1

2

3

4

(f) Real speedup on four cores

Figure 3.3: Benchmarking results of BlockCheck ,
BlockCheckSleep and BlockCheckWait with k = 100 on M2
against input size n1 = n2. Note the optimum .

Implementing Diagonal Frontier 43

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

0.5

1

1.5

2

2.5

(a) Speedup on two cores

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

0.5

1

1.5

2

2.5

(b) Real speedup on two cores

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

1

2

3

(c) Speedup on three cores

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

1

2

3

(d) Real speedup on three cores

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

1

2

3

4

(e) Speedup on four cores

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

1

2

3

4

(f) Real speedup on four cores

Figure 3.4: Benchmarking results of ColumnBlock with parameters (k1,k2)
set to (100, 100) , (100,n2/p+ 1) and (n1/p+ 1,n2/p+ 1) on M2
against input size n1 = n2. Note the optimum .

Implementing Row Splitting 44

We have therefore implemented CF as ColumnBlock (cf. page 62) with pa-
rameters k1 the number of rows threads look ahead for checks similar to
BlockCheck and k2 the column width; we have tried both constant column
width and p columns. See the obtained performance for several choices of
k1,k2 in Figure 3.4 on the preceding page. ColumnBlock can not outperform
BlockCheck by much; we suspect it pays off more for recursions with larger
dependencies Γ.

In order to investigate how the implementations scale for larger input
sizes, we note that for sufficiently large table height n1 speedup of DF imple-
mentations depends mainly on n2. We have therefore ran additional bench-
marks with such flat tables; see Figure 3.5 on the next page for some results.
It is interesting to note that BlockCheckSleep surpasses BlockCheckWait
for big n2. We furthermore see clearly that our schemes do not fare well
on M2 when four cores are used. Comparing 3.5a, 3.5c and 3.5e we see that
speedup development becomes more erratic for growing processor number,
hinting at hardware limitations. Figure 3.6 on page 46 reveals that four
cores do not provide much speedup compared to three cores on M2.

Another interesting observation is that the schemes scale better on M1
than on M2 with two cores; compare Figure 3.7 on page 46 with 3.5a and 3.5b.
Apparently, processors with more cores can be less efficient at managing
parallelism even if only few cores are used.

3.3 Implementing the Row Splitting Scheme

The row splitting scheme RS is simpler than DF and leaves little room for
creativity. We provide a straight-forward implementation RowSplit (cf.
page 63) which has a parameter k which controls the size of blocks it splits
rows into. Again, we can not observe significant differences in performance
as long as k is not chosen too small; see Figure 3.8 on page 47.

With similar reasoning as above, we investigate how RowSplit scales
on flat tables and on different machines. See Figure 3.9 on page 48 and
compare with Figure 3.10 on page 48. We see again that M1 seems to be
superior to M2 on two cores, and using four cores on M2 yields only a slight
advantage compared to three cores. Interestingly, in Figure 3.9a speedup
even appears to degrade slowly on M2 with two cores as instances grow; this
does not happen for other core numbers or on M1.

We observe a curious behaviour: RowSplit surpasses the optimal real
speedup; in fact, it is faster than RowFill even on one processor. We are
confident that our benchmark methodology is sound and are at a loss to
explain the effect.

Implementing Row Splitting 45

0 1 2 3 4
·105

0

0.5

1

1.5

2

2.5

(a) Speedup on two cores

0 1 2 3 4
·105

0

0.5

1

1.5

2

2.5

(b) Real speedup on two cores

0 1 2 3 4
·105

0

1

2

3

(c) Speedup on three cores

0 1 2 3 4
·105

0

1

2

3

(d) Real speedup on three cores

0 1 2 3 4
·105

0

1

2

3

4

(e) Speedup on four cores

0 1 2 3 4
·105

0

1

2

3

4

(f) Real speedup on four cores

Figure 3.5: Benchmarking results of BlockCheck with k = n2/p+1 + 1,
BlockCheckSleep with k = 100 and BlockCheckWait with k = 100
on M2 against input size n2 for fixed n1 = 1000. Note the optimum .

Implementing Row Splitting 46

0 1 2 3 4
·105

0

1

2

3

4

(a) Speedup

0 1 2 3 4
·105

0

1

2

3

4

(b) Real speedup

Figure 3.6: Benchmarking results of BlockCheck with k = n2/p+1 + 1 for
p = 2 , p = 3 and p = 4 on M2 against input size n2 for fixed
n1 = 1000. Note the respective optima .

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·105

0

0.5

1

1.5

2

2.5

(a) Speedup on two cores

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·105

0

0.5

1

1.5

2

2.5

(b) Real speedup on two cores

Figure 3.7: Benchmarking results of BlockCheck with k = n2/p+1 + 1,
BlockCheckSleep with k = 100 and BlockCheckWait with k = 100
on M1 against input size n2 for fixed n1 = 1000. Note the optimum .

Implementing Row Splitting 47

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

0.5

1

1.5

2

2.5

(a) Speedup on two cores

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

1

2

3

4

(b) Real speedup on two cores

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

1

2

3

(c) Speedup on three cores

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

1

2

3

4

5

(d) Real speedup on three cores

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

1

2

3

4

(e) Speedup on four cores

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0

2

4

6

(f) Real speedup on four cores

Figure 3.8: Benchmarking results of RowSplit with parameter k set to
100 and n2/p + 1 on M2 against input size n1 = n2. Note the
optimum .

Implementing Row Splitting 48

0 1 2 3 4
·105

0

1

2

3

4

(a) Speedup

0 1 2 3 4
·105

0

2

4

6

8

(b) Real speedup

Figure 3.9: Benchmarking results of RowSplit with k = n2/p+1 + 1 for
p = 2 , p = 3 and p = 4 on M2 against input size n2 for fixed
n1 = 1000. Note the respective optima .

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·105

0

0.5

1

1.5

2

2.5

(a) Speedup on two cores

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·105

0

1

2

3

4

(b) Real speedup on two cores

Figure 3.10: Benchmarking results of RowSplit with k = n2/p+1+ 1 on
M1 against input size n2 for fixed n1 = 1000. Note the optimum .

Implementing Row Splitting 49

Summary

We have found decent implementations of the algorithms derived in Chap-
ter 2. While the theoretical results can not be replicated completely, the im-
plementations scale well enough. Performance does not collapse completely
for the investigated processor numbers; even if the measured speedups are
not nearly optimal for higher numbers, more cores promise better perfor-
mance. There seem to be limits imposed by hardware and software platform
restrictions, though. We have also seen that the choice of scheme parameters
can make a difference. It may be possible to choose them depending on the
machine at hand by auto-tuning, a technique that benchmarks parametric
algorithms during compilation [LTC10].

Note that the provided implementations can after some polishing be
used as a library.

4
Compiler Integration
In the previous chapter, we have devised prototype implementations of
the dynamic programming parallelisation schemes proposed in Chapter 2.
While we have not achieved optimal speedup in practise, we have seen some
speedup. If we can extend an existing compiler to apply our schemes with
little effort for the programmer, non-optimal speedups are a lesser concern;
we can view our approach as a compiler optimisation that speeds up critical
parts of an application by factor three or more1.

We have decided to extend the Scala2 compiler as it offers a rich interface
for compiler plugins, that is the compiler can be extended without changing
its core. Plugins can be injected after any compiler phase and have full
access to the decorated abstract syntax tree. Furthermore, Scala resides on
the JVM so the scheme implementations we have are a good fit.

We will have to lower our sights with respect to performance for two
reasons beyond scheme implementation. First, users might use complex
data types as cell content, such as tuples or sets. On the JVM, arrays of
such values are always arrays of references which causes our schemes to
dereference to the heap a lot. Secondly, we have to assume that any value is
also a legal cell content, so we need another way of marking cells that have
not yet been computed. We use Scala’s Option datatype for this, which
might cause yet another object to be created and dereferenced for every
cell. Note that in Chapter 3, we used integers as domain and otherwise
illegal value −1 for marking uncomputed cells, circumventing both issues.

We have identified the following four key steps our extension has to
perform:

1. Detect methods that are dynamic programming recursions.

2. Modify detected recursions so they fit our assumptions3.
1In fact, we provide even exponential speedup relative to the recursive user-provided

code.
2See scala-lang.org for extensive information about Scala.
3In particular top-left orientation and compatibility with R.

50

http://scala-lang.org

51

� �
def ed i td (a : Str ing , b : S t r ing)

(i : Int = a . length ,
j : Int = b . l ength) : Int = {

(i , j) match {
case (0 , 0) => 0
case (0 , j) => j
case (i , 0) => i
case (i , j) => (ed i td (a , b) (i−1 , j) + 1) min

(ed i td (a , b) (i , j−1) + 1) min
(ed i td (a , b) (i−1 , j−1) +

(i f (a (i−1) != b(j−1)) 1
else 0))

}
}�

Figure 4.1: Edit distance as recursive method in idiomatic Scala.

3. Decide which of the three cases applies.

4. Rewrite the methods to use the appropriate scheme.

For the purpose of providing a proof-of-concept implementation we will focus
on the last step; we delegate most complexity of the other steps to the user.

Detection of dynamic programming recursions is not possible in general;
note that in the context of this work, we do not even have a formal definition
of what to look for on a semantic level. Therefore, we assume users know
when they have a dynamic programming problem and recursion at hand4,
for instance something similar to the code given in Figure 4.1. If they want
to invoke our transformation, they have to annotate such methods with
@DynamicProgramming.

We omit all attempts at salvaging dynamic programming recursions that
do not fit our paradigm, that is can not be solved by standard algorithm
R. It certainly is impossible in general and we trust our users to be able to
express their recursions in a compatible way.

Selecting the correct case comes down to assigning a subset of L,UL,U
and UR to every recursive call; the rest is immediate. As parameters can
be computed in arbitrarily complex ways, this again is an impossible task
in general. We implement some basic heuristics, though; recursive calls
with parameters of the form (i + c) with c an integer literal and similar
are easy to deal with. For more complicated situations we provide markers
which users can put in front of recursive calls in order to inform our de-

4Or, equivalently: they are domain experts which are novice or lazy programmers.

52

� �
@DynamicProgramming
def ed i td (a : Str ing , b : S t r ing)

(i : In t = a . length ,
j : Int = b . l ength) : Int = {

(i , j) match {
case (0 , 0) => 0
case (0 , j) => j
case (i , 0) => i
case (i , j) => ({L ; ed i td (a , b) (i−1 , j)} + 1) min

({U; ed i td (a , b) (i , j−1)} + 1) min
({UL; ed i td (a , b) (i−1 , j−1)} +

(i f (a (i−1) != b(j−1)) 1
else 0))

}
}�

(a) Annotated recursion as plugin input.� �
def ed i td (a : Str ing , b : S t r ing) () : Int = {

val ar r = Array . f i l l [Option [Int]]
(a . l ength + 1 , b . l ength + 1)
(None)

val f = (i : Int , j : In t) => (i , j) match {
case (0 , 0) => 0
case (0 , j) => j
case (i , 0) => i
case (i , j) => (ar r (i−1) (j) . get + 1) min

(a r r (i) (j−1) . get + 1) min
(a r r (i−1) (j−1) . get +

(i f (a (i−1) != b(j−1)) 1
else 0))

}

BlockCheck (arr , f) ;
a r r (a . l ength) (b . l ength) . get

}�

(b) Plugin output.

Figure 4.2: Edit distance as annotated recursion in idiomatic Scala (a) and
our plugin’s output (b). Note how the highlighted parts are used respectively
rewritten during the process.

53

cision. Note that we trust those markers blindly; chaos awaits those who
mark incorrectly. If you have to do most of the work, anyway, you can also
force the decision to one case by passing it as parameter to the method
annotation; for instance @DynamicProgramming(Case2) will cause RS to be
used no matter what. See Figure 4.2a on the preceding page for a fully an-
notated example and note how minimally invasive our approach is compared
to programming an efficient solution yourself.

Finally, we transform the annotated method to use one of our implemen-
tations. If we can figure out areas at all, we use at the very least R; for the
parallelisable cases we have chosen reimplementations of BlockCheck and
RowSplit, both with k = 100. See Figure 4.2b on the previous page for the
desired final result; note how the biggest part—that is cell function f—can
be copied with only small changes.

The plugin’s implementation itself is mostly tedious and we therefore
leave details out here; the curious reader may check pages 64 and 65 for
some exemplary code. See also pages 66 to 68 for some examples of code
that is analysed correctly. Refer to the supplements [Rei12] for full sources
and instructions on how to use them.

5
Conclusion
In Chapter 1 we have proposed a way of evaluating parallel algorithms
that focuses on optimising speedup on a given number of processors and
is abstract enough to allow rigorous analysis. We have also introduced an
abstraction of discrete dynamic programming problems that emphasises fea-
tures important for parallel computation.

In Chapter 2 we have used both to derive a characterisation of parallelis-
able dynamic programming problems in a simplified setting. In this setting,
we have found asymptotically optimal parallel variants of the classical yet
optimal row by row filling algorithm for two cases; these algorithms are gen-
eral for huge classes of dynamic programming problems. In a third case, we
have shown that no scalable parallel algorithm exists.

We have put these theoretic results to the test in Chapter 3 and sug-
gested several prototype implementations. Aside from inevitable disruptive
influence of real platforms, we have seen practise agree with theory to a
reasonable extent.

Finally, we have integrated a proof of concept, semi-automatic transfor-
mation from dynamic programming recursion to parallel iterative algorithm
into a real-world compiler in Chapter 4.

In summary, we have shown that semi-automated parallelisation of cer-
tain dynamic programming recursions is feasible and—provided the end
result’s performance can be improved—profitable.

5.1 Future Work

Literally all elements of the above can be improved so there is no want for
work opportunities.

First of all, we let both machine model and programming language be
implicit and very vague. This has served our purpose well but investigat-
ing our results on well defined models is certainly a point of interest. We
have also ignored memory hierarchies for the most part—note our forays
in Sections 2.5 and 2.6— which may or may not have affected our decision

54

Future Work 55

process negatively; rigorous investigation and improvement of the proposed
schemes with respect to advanced cost models is certainly desirable. We
suspect that what we tentatively call the dependency radius, that is the
maximum distance between i and elements in Γd(i), may be a quantity of
interest.

Furthermore, our theoretical treatment is not as general as one might
wish. Higher dimensional problems have to be investigated more closely, as
have more intricate structures of Γ+d than we have considered.

On the practical side, we have only provided prototype implementations.
There is certainly room for improvement, following up on further theoretic
results but also in the way of low-level optimisations that might necessitate
switching to a more machine-oriented programming language. In particular,
optimising storage of memoisation matrices with respect to locality offers
rich potential. On a more humble note, our prototypes have not yet been
benchmarked on problems that have larger dependency sets dep than edit
distance, and also not on machines with many cores, that is more cores than
typical personal computers have; these gaps needs to be closed.

Another useful extension might be enabling result functions more com-
plex than choosing the element in the lower right corner. For instance,
edit distance can be modified to ask for the score of semi-global alignments
which allow a free suffix of deletions; the result is then the minimal value
in the last row. Even more interesting is backtracking which requires to
traverse backwards through the matrix. Neither our prototypes nor our
compiler plugin support such concepts so far, again leaving room for further
work.

Improving compiler integration is a bottomless pit. So far, we have im-
plemented only rudimentary case detection; there are immediate extensions,
such as recognising that {assert(k > 0); d(i,j-k)} hits area L and simi-
larly for variations. We have also restricted ourselves to syntactical detection
so far; later phases of the compiler might provide useful information, e.g.
data flow analysis, that can inform our decision making. Additionally, the
generated code’s performance is less than exciting and has to be improved.

Lastly, we envision that improved successors of our approach be inte-
grated with one of the tools out there that derive sequential dynamic pro-
gramming algorithms from abstract problem descriptions.

Future Work 56

Acknowledgements

First of all, I have to thank my advisors Markus Nebel and Umut Acar for
supporting the adventure of this thesis. Their respective group members
Frank Weinberg in one and Arthur Charguéraud and Mike Rainey in the
other building deserve thanks for spotting small gaps in my theory early on
respectively providing useful pointers to work about parallel algorithms and
programming.

Shoutouts go into the virtual realms to irc.freenode.net/scala chat
resident retronym who helped dissolving a Scala programming roadblock,
and to the folks on TEX Stack Exchange for providing the best resource for
all LATEX problems and completely necessary embellishments. Also warm
greetings to Computer Science Stack Exchange and its denizens for helping
with turning procrastination into productive quality time.

Big thanks are due to quality control task force members Ines Raschen-
dorfer, Jan Bormann and Lars Hüttenberger for their invaluable feedback
that helped catching many small inaccuracies and not so small presentation
issues; you simply can not find those in your own texts.

Sebastian Wild deserves thanks for sharing Anika’s office space as well
as sweets and coffee with me, and for being up to discussing everything
interesting we discovered over time, and sometimes even our work. He and
Uli Laube also introduced me to the world of LATEX details normal people
need a magnifying glass to see; Uli’s package-of-the-day initiative was too
infectious.

My friends are to be commended and thanked for respecting my partial
free-time hiatus during the final weeks despite me scoffing at them for the
very same thing earlier.

And last but certainly not least, heartfelt love and thanks to sambo
Janina for bearing with me.

http://tex.stackexchange.com
http://cs.stackexchange.com

A
Source Code

A.1 Prototype Implementations

Listing A.1: Interfaces for dynamic programming problems and solvers.� �
interface DynProgProblem<T> extends Cloneable {

int [] getDimension () ;
boolean isComputed (int [] i) ;
boolean isComputable (int [] i) ;
void compute (int [] i) ;
T ge tSo lu t i on () ;
boolean i s So l v ed () ;
DynProgProblem<T> clone () ;

}

interface DynProgSolver {
void s o l v e (DynProgProblem<?> problem) ;

}�

Listing A.2: Core loop of R implementation.� �

f ina l int [] dim = problem . getDimension () ;
f ina l int [] param = new int [2] ;

for (param [0]=0 ; param [0]<dim [0] ; param [0]++) {
for (param [1]=0 ; param [1]<dim [1] ; param [1]++) {

problem . compute (param) ;
}

}�

57

Prototype Implementations 58

Listing A.3: Core loop of DF implementation CellCheck.� �
f ina l int [] param = new int [2] ;
f ina l int [] dim = problem . getDimension () ;

for (param [0]=w; param [0]<dim [0] ; param [0]+=p) {
for (param [1]=0 ; param [1]<dim [1] ; param [1]+=1) {

while (! problem . isComputable (param)) {
Thread . y i e l d () ;

}

problem . compute (param) ;
}

}�

Listing A.4: Core loop of DF implementation CellCheckSleep.� �

f ina l int [] param = new int [2] ;
f ina l int [] dim = problem . getDimension () ;

for (param [0]=w; param [0]<dim [0] ; param [0]+=p) {
for (param [1]=0 ; param [1]<dim [1] ; param [1]+=1) {

while (! problem . isComputable (param)) {
try {

Thread . s l e ep (1) ;
}
catch (Inter ruptedExcept ion e) {

e . pr intStackTrace () ;
}

}

problem . compute (param) ;
}

}�

Prototype Implementations 59

Listing A.5: Core loop of DF implementation CellCheckWait.� �
f ina l int [] param = new int [2] ;
f ina l int [] dim = problem . getDimension () ;
f ina l int l e f tNe ighbour = ((w − 1) % p) >= 0

? (w − 1) % p
: p + ((w − 1) % p) ;

for (param [0]=w; param [0]<dim [0] ; param [0]+=p) {
for (param [1]=0 ; param [1]<dim [1] ; param [1]+=1) {

note . waitWhileNotComputable (l e f tNe ighbour ,
problem ,
param) ;

problem . compute (param) ;
note . n o t i f y (w) ;

}
}�

Listing A.6: Core loop of DF implementation BlockCheck.� �
f ina l int [] param = new int [2] ;
f ina l int [] checker = new int [2] ;
f ina l int [] dim = problem . getDimension () ;

for (param [0]=w; param [0]<dim [0] ; param [0]+=p) {
checker [0] = Math .max(0 , param [0] − 1) ;
param [1] = 0 ;

for (int o f f s e t=0 ; o f f s e t <dim [1] ; o f f s e t+=k) {
checker [1] = Math . min (dim [1] − 1 ,

o f f s e t + k − 1) ;
while (param [0] != 0

&& ! problem . isComputed (checker)) {
Thread . y i e l d () ;

}

for (; param [1]<Math . min (dim [1] , o f f s e t + k) ;
param [1]+=1) {

problem . compute (param) ;
}

}
}�

Prototype Implementations 60

Listing A.7: Core loop of DF implementation BlockCheckSleep.� �
f ina l int [] param = new int [2] ;
f ina l int [] checker = new int [2] ;
f ina l int [] dim = problem . getDimension () ;

for (param [0]=w; param [0]<dim [0] ; param [0]+=p) {
checker [0] = Math .max(0 , param [0] − 1) ;
param [1] = 0 ;

for (int o f f s e t=0 ; o f f s e t <dim [1] ; o f f s e t+=k) {
checker [1] = Math . min (dim [1] − 1 ,

o f f s e t + k − 1) ;
while (param [0] != 0

&& ! problem . isComputed (checker)) {
try {

Thread . s l e ep (1) ;
}
catch (Inter ruptedExcept ion e) {

e . pr intStackTrace () ;
}

}

for (; param [1]<Math . min (dim [1] , o f f s e t + k) ;
param [1]+=1) {

problem . compute (param) ;
}

}
}�

Prototype Implementations 61

Listing A.8: Core loop of DF implementation BlockCheckWait.� �
f ina l int [] param = new int [2] ;
f ina l int [] checker = new int [2] ;
f ina l int [] dim = problem . getDimension () ;
f ina l int k = b lockS i z e > 0 ? b lo ckS i z e

: dim [1] / (p + 1) + 1 ;
f ina l int l e f tNe ighbour = ((w − 1) % p) >= 0

? (w − 1) % p
: p + ((w − 1) % p) ;

for (param [0]=w; param [0]<dim [0] ; param [0]+=p) {
checker [0] = Math .max(0 , param [0] − 1) ;
param [1] = 0 ;

for (int o f f s e t=0 ; o f f s e t <dim [1] ; o f f s e t+=k) {
checker [1] = Math . min (dim [1] − 1 ,

o f f s e t + k − 1) ;
i f (param [0] != 0) {

note . waitWhileNotComputed (l e f tNe ighbour ,
problem ,
checker) ;

}

for (; param [1]<Math . min (dim [1] , o f f s e t + k) ;
param [1]+=1) {

problem . compute (param) ;
}

note . n o t i f y (w) ;
}

}�

Prototype Implementations 62

Listing A.9: Core loop of DF implementation ColumnBlock.� �
f ina l int [] param = new int [2] ;
f ina l int [] checker = new int [2] ;
f ina l int [] dim = problem . getDimension () ;
f ina l int cw = columnWidth > 0 ? columnWidth

: dim [1] / p + 1 ;
f ina l int k = b lockS i z e > 0 ? b lo ckS i z e

: dim [0] / p + 1 ;
f ina l int l e f tNe ighbour = ((w − 1) % p) >= 0

? (w − 1) % p
: p + ((w − 1) % p) ;

for (int c o f f s e t=w�cw ;
c o f f s e t <dim [1] ;
c o f f s e t = Math . min (dim [1] , c o f f s e t + cw�p)) {

checker [1] = c o f f s e t − 1 ;

for (int r o f f s e t=0 ;
r o f f s e t <dim [0] ;
r o f f s e t = Math . min (dim [0] , r o f f s e t+k)) {

checker [0] = Math . min (dim [0] − 1 , r o f f s e t + k) ;

i f (c o f f s e t > 0) {
note . waitWhileNotComputed (l e f tNe ighbour ,

problem ,
checker) ;

}

for (param [0]= r o f f s e t ;
param [0]<Math . min (dim [0] , r o f f s e t+k) ;
param [0]++) {

for (param [1]= c o f f s e t ;
param [1]<Math . min (dim [1] , c o f f s e t+cw) ;
param [1]++) {

problem . compute (param) ;
}

}

note . n o t i f y (w) ;
}

}�

Prototype Implementations 63

Listing A.10: Core loop of RS implementation RowSplit.� �
// param = new int [] { 0 , 0 };
// dim = prob . getDimension () ;

f ina l int k = b lockS i z e > 0 ? b lo ckS i z e
: dim [1] / p + 1 ;

for (; param [0] < dim [0] ; param [0]++) {
for (int o = nr � k ; o < dim [1] ; o += p � k) {

for (param [1] = o ;
param [1] < Math . min (o + k , dim [1]) ;
param [1]++) {

prob . compute (param) ;
}

}

// sync
}�

Compiler Plugin Samples 64

A.2 Compiler Plugin Samples

Listing A.11: Tree transformer that removes markers from recursive calls.� �
object MarkerRemover extends Transformer {

override def trans form (t r e e : Tree) : Tree = {
val t r e e 1 = super . t rans form (t r e e)

t r e e 1 match {
case Block (statements , r e s u l t) => {

val nonLabel = statements .map { c =>
c match {

case i @ Ident (n) => {
i f (Seq ("L" , "UL" , "U" , "UR") conta in s

n . t oS t r i ng) {
None

}
else {

Some(i)
}

}
case _ => Some(c)

}
} . f l a t t e n

i f (nonLabel . s i z e == 0) {
r e s u l t

}
else {

treeCopy . Block (t r e e 1 ,
nonLabel ,
r e s u l t)

}
}
case _ => tr e e 1

}
}

}�

Compiler Plugin Samples 65

Listing A.12: Tree transformer that rewrites recursive calls to array accesses.� �
class Recurs ionRewriter (val method_name : Str ing ,

val array : Tree)
extends Transformer {

override def trans form (t r e e : Tree) : Tree = {
val t r e e 1 = super . t rans form (t r e e)

t r e e 1 match {
case Apply (Apply (Ident (name) , a rgs 1) ,

a rgs 2) => {
i f (method_name == name . t oS t r i ng ()) {

S e l e c t (Apply (Apply (array , a rgs 2 take 1) ,
a rgs 2 drop 1) ,

newTermName(" get "))
}
else {

t r e e 1
}

}
case _ => tr e e 1

}
}

}�

Compiler Plugin Samples 66

Listing A.13: Edit distance in Scala. The plugin detects and translates it
correctly.� �
@DynamicProgramming
def ed i td (a : Str ing , b : S t r ing)

(i : Int = a . length ,
j : Int = b . l ength) : Int = {

(i , j) match {
case (0 , 0) => 0
case (0 , j) => j
case (i , 0) => i
case (i , j) => (ed i td (a , b) (i−1 , j) + 1) min

(ed i td (a , b) (i , j−1) + 1) min
(ed i td (a , b) (i−1 , j−1) +
(i f (a (i−1) != b(j−1)) 1 else 0))

}
}�

Listing A.14: Longest common subsequence in Scala. The plugin detects
and translates it correctly.� �
@DynamicProgramming
def l c s (a : Str ing , b : S t r ing)

(i : Int = a . length ,
j : Int = b . l ength) : Int = {

(i , j) match {
case (0 ,_) | (_, 0) => 0
case (i , j) i f a (i−1) == b(j−1) =>

l c s (a , b) (i−1 , j−1) + 1
case (i , j) =>

l c s (a , b) (i , j−1) max l c s (a , b) (i−1 , j)
}

}�

Compiler Plugin Samples 67

Listing A.15: Bellman-Ford algorithm in Scala. The plugin detects it cor-
rectly, but the translated version causes the compiler to crash.� �
@DynamicProgramming
def shor te s tPath [T] (co s t : Array [Array [Option [Int]]] ,

s t a r t : Int)
(i : Int = cos t . length ,
j : Int = cos t . l ength − 1)

: Option [Int] = {
(i , j) match {

case (0 , s) i f s == s t a r t => Some(0)
case (0 , s) i f s != s t a r t => None
case (i , j) => ((0 un t i l c o s t . l ength) map { k =>

({UL; U; UR;
shorte s tPath (cost , s t a r t) (i−1 , k)} ,

co s t (k) (j)
) match {

case (Some(l) , Some(c)) => Some(l + c)
case _ => None

}
}) . f l a t t e n match {

case Seq () => None
case s => Some(s . min)

}
}

}�

Compiler Plugin Samples 68

Listing A.16: CYK algorithm in Scala. The plugin detects it correctly, but
the translated version causes the compiler to crash.� �

def cyk (input : Str ing , g : CNFGrammar) =
cykh (input , g) () conta in s g . s t a r t

@DynamicProgramming
private def cykh (input : Str ing , g : CNFGrammar)

(i : Int = input . l ength − 1 ,
j : Int = 0) : Set [Grammar .N] = {

(i , j) match {
case (0 , j) => g . nonterminals f i l t e r

(g . t r u l e s conta in s (_, input (j)))
case (i , j) i f j + i < input . l ength => {

(1 to i) map { k : Int =>
g . nonterminals f i l t e r { n =>

g . n ru l e s e x i s t s { case (n0 , (n1 ,n2)) =>
(n0 == n) &&
({U; cykh (input , g) (i−k , j)}

conta in s n1) &&
({UR; cykh (input , g) (k−1 , j+i−k+1)}

conta in s n2)
}

}
} reduce (_ ++ _)

}
case _ => Set () : Set [Grammar .N]

}
}�

B
Glossary

Notation

General

i,n monadic values
i, j polyadic values, e.g. i = (i1, i2)
N { 0, 1, 2, 3, . . . }
N+ { 1, 2, 3, . . . }
Sk k-ary Cartesian product
o,O,Θ,Ω,ω Landau symbols
f ∼ g asymptotic equality, i.e. limx→∞ f(x)/g(x) = 1
[P] 1 if predicate P is true, 0 else
[a..b] {a,a+ 1, . . . ,b− 1,b }

Thesis-specific

õ(f) o(f) ∪ {g : f ∼ g }
TAp Parallel runtime, see Definition 2 on page 6
SAp Parallel speedup, see Definition 3 on page 7
Γf, Γ+f , Γ̃f, Γ̃+f Cell dependencies, see Definition 8 on page 12

CF Column filling scheme, see page 34.
DF Diagonal frontier scheme, see page 24.
R Row by row filling, see page 21.
RS Row splitting scheme, see page 28.

69

70

Definitions

1 Parallel Algorithm . 6
2 Runtime . 6
3 Speedup . 7
5 Scalability . 7
6 Foundedness . 8
8 Computation Dependency . 12
10 Dynamic Programming . 14
12 Dependency Areas . 17

Examples

7 Parallel Evaluation of Sums . 8
9 Computation Dependencies of Fibonacci Numbers 13
11 Edit Distance . 14
15 Edit Distance (continued) . 22
17 Single-Source Shortest Paths . 27

Results

13 Complete Case Distinction . 20
16 (C1) Parallelised by Diagnoal Frontier Scheme 23
18 (C2) Parallelised by Row Splitting Scheme 27
19 (C3) Not Parallelisable . 30
20 Unavoidable Communication Overhead 35

Bibliography
[ACDS03] Carlos E. R. Alves, Edson Cáceres, Frank K. H. A. Dehne, and

Siang W. Song. A parallel wavefront algorithm for efficient bio-
logical sequence comparison. In Proceedings of the 2003 inter-
national conference on Computational science and its appli-
cations, volume 2 of ICCSA’03, pages 249–258. Springer-Verlag
Berlin, Heidelberg, 2003. URL http://dl.acm.org/citation.
cfm?id=1762008.1762040.

[ARQ93] Rumen Andonov, Frédéric Raimbault, and Patrice Quinton. Dy-
namic programming parallel implementations for the knapsack
problem. Rapport de recherche RR-2037, INRIA, 1993. URL
http://hal.inria.fr/inria-00074634.

[AU72] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Pars-
ing, Translation, and Compiling, volume Volume 1: Parsing.
Prentice-Hall, 1972.

[Bel57] Richard Bellman. Dynamic Programming. Princeton Univer-
sity Press, 1957.

[Ble96] Guy E. Blelloch. Programming parallel algorithms. Communi-
cations of the ACM, 39:85–97, March 1996. ISSN 0001-0782.
URL http://doi.acm.org/10.1145/227234.227246.

[Bra94] Phillip Gnassi Bradford. Parallel Dynamic Program-
ming. PhD thesis, Indiana University, 1994. URL
http://www.cs.indiana.edu/cgi-bin/techreports/TRNNN.
cgi?trnum=TR424.

[Bre74] Richard P. Brent. The parallel evaluation of general arithmetic
expressions. Journal of the ACM, 21:201–206, April 1974.
ISSN 0004-5411. URL http://doi.acm.org/10.1145/321812.
321815.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms. The MIT Press, 3rd
edition, 2009. ISBN 978-0-262-53305-8.

71

BIBLIOGRAPHY 72

[EI96] Ömer Eğecioğlu and Maximilian Ibel. Parallel algorithms for
fast computation of normalized edit distances. In Eighth IEEE
Symposium on Parallel and Distributed Processing, pages
496–503. IEEE, 1996.

[FLR98] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The
implementation of the cilk-5 multithreaded language. In Pro-
ceedings of the ACM SIGPLAN 1998 conference on Pro-
gramming language design and implementation, PLDI ’98,
pages 212–223. ACM, New York, NY, USA, 1998. ISBN 0-89791-
987-4. URL http://doi.acm.org/10.1145/277650.277725.

[FW78] Steven Fortune and James Wyllie. Parallelism in random ac-
cess machines. In Proceedings of the tenth annual ACM sym-
posium on Theory of computing, STOC ’78, pages 114–118.
ACM, New York, NY, USA, 1978. URL http://doi.acm.org/
10.1145/800133.804339.

[Gus97] Dan Gusfield. Algorithms on Strings, Trees and Sequences:
Computer Science and Computational Biology. Cambridge
University Press, 1997. ISBN 978-0521585194.

[Hoß83] Friedel Hoßfeld. Parallele Algorithmen, volume 64 of
Informatik-Fachberichte. Springer, 1983. ISBN 3-540-12283-
4.

[IT94] Oscar Ibarra and Nicholas Trân. On the parallel complexity of
solving recurrence equations. In Ding-Zhu Du and Xiang-Sun
Zhang, editors, Algorithms and Computation, volume 834 of
Lecture Notes in Computer Science, pages 469–477. Springer
Berlin / Heidelberg, 1994. ISBN 978-3-540-58325-7. URL http:
//dx.doi.org/10.1007/3-540-58325-4_213.

[KRS90] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. A
complexity theory of efficient parallel algorithms. Theo-
retical Computer Science, 71(1):95 – 132, 1990. ISSN
0304-3975. URL http://www.sciencedirect.com/science/
article/pii/030439759090192K.

[Law12] Peter Lawrey. Java-thread-affinity. Open source
project, 2012. URL https://github.com/peter-lawrey/
Java-Thread-Affinity. Accessed April 13th, 2012.

[LTC10] Jiajia Li, Guangming Tan, and Mingyu Chen. Automatically
tuned dynamic programming with an algorithm-by-blocks. In
Parallel and Distributed Systems (ICPADS), 2010 IEEE

BIBLIOGRAPHY 73

16th International Conference on, pages 452–459. IEEE, dec.
2010. ISSN 1521-9097.

[MAFC11] Leandro A. J. Marzulo, Tiago A. O. Alves, Felipe M. G. França,
and Vítor Santos Costa. Couillard: Parallel programming via
coarse-grained data-flow compilation. Version 1. Published on
arXiv, September 2011. URL http://arxiv.org/abs/1109.
4925.

[Mor82] Thomas L Morin. Monotonicity and the principle of op-
timality. Journal of Mathematical Analysis and Ap-
plications, 88(2):665–674, 1982. ISSN 0022-247X. URL
http://www.sciencedirect.com/science/article/pii/
0022247X82902232.

[NCTT09] Adrian Nistor, Wei-Ngan Chin, Tiow-Seng Tan, and Nicolae
Tapus. Optimizing the parallel computation of linear recur-
rences using compact matrix representations. Journal of Par-
allel and Distributed Computing, 69(4):373–381, 2009. ISSN
0743-7315. URL http://www.sciencedirect.com/science/
article/pii/S0743731509000094.

[Par87] Ian Parberry. Parallel complexity theory. Research notes in
theoretical computer science. Pitman, 1987. ISBN 978-0-273-
08783-0. 1–200 pp. URL http://larc.unt.edu/ian/books/
free/.

[PBS11] Yewen Pu, Rastislav Bodik, and Saurabh Srivastava. Synthesis of
first-order dynamic programming algorithms. In Proceedings of
the 2011 ACM international conference on Object oriented
programming systems languages and applications, OOPSLA
’11, pages 83–98. ACM, New York, NY, USA, 2011. ISBN 978-
1-4503-0940-0. URL http://doi.acm.org/10.1145/2048066.
2048076.

[Rei12] Raphael Reitzig. Master thesis companion sources. Personal
websites, May 2012. URL http://lmazy.verrech.net/pub/
mathesis/.

[RR99] Radu Rugina and Martin Rinard. Automatic parallelization of
divide and conquer algorithms. SIGPLAN Not., 34(8):72–83,
May 1999. ISSN 0362-1340. URL http://doi.acm.org/10.
1145/329366.301111.

[Ryt88] Wojciech Rytter. On efficient parallel computations for
some dynamic programming problems. Theoretical Com-
puter Science, 59(3):297–307, 1988. ISSN 0304-3975. URL

BIBLIOGRAPHY 74

http://www.sciencedirect.com/science/article/pii/
0304397588901478.

[SJG11] Georg Sauthoff, Stefan Janssen, and Robert Giegerich. Bell-
man’s GAP - a declarative language for dynamic program-
ming. In Proceedings of 13th International ACM SIG-
PLAN Symposium on Principles and Practice of Declara-
tive Programming, PPDP ’11. ACM, 2011. ISBN 978-1-4503-
0776-5/11/07. URL http://www.techfak.uni-bielefeld.de/
~gsauthof/docs/gapl.ppdp.2011.pdf.

[Sni78] Moshe Sniedovich. Dynamic programming and principles
of optimality. Journal of Mathematical Analysis and
Applications, 65(3):586–606, 1978. ISSN 0022-247X. URL
http://www.sciencedirect.com/science/article/pii/
0022247X7890166X.

[TP96] Stefan Tschöke and Thomas Polzer. Portable parallel branch-
and-bound library: User manual. Technical report, University
of Paderborn, 1996. URL http://www2.cs.uni-paderborn.de/
cs/ag-monien/SOFTWARE/PPBB/ppbblib.html.

	Introduction
	Parallel Algorithms
	Dynamic Programming
	Related Work

	Theoretical Groundwork
	Diagonal Frontier
	Row Splitting
	Not Parallelisable Case
	Relaxing Assumptions
	Considering Caches
	Considering Communication
	Lifting to Higher Dimensions

	Prototype Implementation
	Framework
	Implementing Diagonal Frontier
	Implementing Row Splitting

	Compiler Integration
	Conclusion
	Future Work

	Source Code
	Prototype Implementations
	Compiler Plugin Samples

	Glossary

